Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2017, Volume 25, Number 2, Pages 60–69 (Mi timb278)  

On the uniqueness of initial boundary value problems for a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions

A. I. Nikitin

Vitebsk State University named after P. M. Masherov
References:
Abstract: We consider initial boundary value problem for a system of semilinear parabolic equations with nonlinear nonlocal Neumann boundary conditions and nonnegative initial data. We prove uniqueness and uniqueness of solutions.
Received: 18.09.2017
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: A. I. Nikitin, “On the uniqueness of initial boundary value problems for a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions”, Tr. Inst. Mat., 25:2 (2017), 60–69
Citation in format AMSBIB
\Bibitem{Nik17}
\by A.~I.~Nikitin
\paper On the uniqueness of initial boundary value problems for a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions
\jour Tr. Inst. Mat.
\yr 2017
\vol 25
\issue 2
\pages 60--69
\mathnet{http://mi.mathnet.ru/timb278}
Linking options:
  • https://www.mathnet.ru/eng/timb278
  • https://www.mathnet.ru/eng/timb/v25/i2/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :83
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025