Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2016, Volume 24, Number 1, Pages 19–29 (Mi timb254)  

Boolean-valued matrices in the open Leontiev model

P. P. Zabreiko

Belarusian State University
References:
Abstract: The article deals with boolean-valued matrices and the relations between such matrices and usual matrices with nonnegative elements. The main results are concerned with the canonical homomorphism between nonnegative matrices and boolean-valued matrices; this homomorphism allows to calculate the solution supports of linear equations with nonnegative matrices by the supports of right hand sides of these equations. Some applications to the open Leontiev models in mathematical economics are given.
Received: 01.03.2016
Document Type: Article
UDC: 517.948:330.105
Language: Russian
Citation: P. P. Zabreiko, “Boolean-valued matrices in the open Leontiev model”, Tr. Inst. Mat., 24:1 (2016), 19–29
Citation in format AMSBIB
\Bibitem{Zab16}
\by P.~P.~Zabreiko
\paper Boolean-valued matrices in the open Leontiev model
\jour Tr. Inst. Mat.
\yr 2016
\vol 24
\issue 1
\pages 19--29
\mathnet{http://mi.mathnet.ru/timb254}
Linking options:
  • https://www.mathnet.ru/eng/timb254
  • https://www.mathnet.ru/eng/timb/v24/i1/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :391
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024