Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2015, Volume 23, Number 2, Pages 29–36 (Mi timb238)  

Upper bounds for the number of integer polynomials with given discriminants

N. V. Budarinaabc, D. Dickinsonabc, V. I. Bernikabc

a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
b National University of Ireland, Maynooth
c Institute of Mathematics of the National Academy of Sciences of Belarus
References:
Abstract: A generalization of the Gelfond theorem on the smallest value of the two integer polynomials without common roots was obtained, taking into account the evaluation of all their derivatives.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-90002_Бел_а
Belarusian Republican Foundation for Fundamental Research Ф14Р-034
Received: 14.06.2015
Document Type: Article
UDC: 511.42
Language: Russian
Citation: N. V. Budarina, D. Dickinson, V. I. Bernik, “Upper bounds for the number of integer polynomials with given discriminants”, Tr. Inst. Mat., 23:2 (2015), 29–36
Citation in format AMSBIB
\Bibitem{BudDicBer15}
\by N.~V.~Budarina, D.~Dickinson, V.~I.~Bernik
\paper Upper bounds for the number of integer polynomials with given discriminants
\jour Tr. Inst. Mat.
\yr 2015
\vol 23
\issue 2
\pages 29--36
\mathnet{http://mi.mathnet.ru/timb238}
Linking options:
  • https://www.mathnet.ru/eng/timb238
  • https://www.mathnet.ru/eng/timb/v23/i2/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :91
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024