Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2015, Volume 23, Number 1, Pages 76–83 (Mi timb231)  

This article is cited in 1 scientific paper (total in 1 paper)

Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers

A. S. Kudin, A. V. Lunevich

Institute of Mathematics of the National Academy of Sciences of Belarus
Full-text PDF (275 kB) Citations (1)
References:
Abstract: In this paper it is proved that if a positive function $\mathit\Psi$ is monotonically decreasing and a series $\sum_{r=1}^\infty\mathit\Psi(r)$ diverges, then the set of points $(x,z,\omega)\in\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$ for which there are infinitely many polynomials, such that the inequalities are satisfied
$$ |P(x)|<H^{-v_1}\mathit\Psi^{\lambda_1}(H), \quad |P(z)|<H^{-v_2}\mathit\Psi^{\lambda_2}(H), \quad |P(\omega)|_p<H^{-v_3}\mathit\Psi^{\lambda_3}(H) $$
(where is $v_1+2v_2+v_3=n-3,$ $\lambda_1+2\lambda_2+\lambda_3=1,$ $n$ — polynomial degree, $v_i,\lambda_i>0,$ $i=1,2,3$), has full measure.
Received: 23.12.2014
Document Type: Article
UDC: 511.42
Language: Russian
Citation: A. S. Kudin, A. V. Lunevich, “Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers”, Tr. Inst. Mat., 23:1 (2015), 76–83
Citation in format AMSBIB
\Bibitem{KudLun15}
\by A.~S.~Kudin, A.~V.~Lunevich
\paper Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
\jour Tr. Inst. Mat.
\yr 2015
\vol 23
\issue 1
\pages 76--83
\mathnet{http://mi.mathnet.ru/timb231}
Linking options:
  • https://www.mathnet.ru/eng/timb231
  • https://www.mathnet.ru/eng/timb/v23/i1/p76
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024