Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2014, Volume 22, Number 2, Pages 63–73 (Mi timb221)  

A generalization of John–Nirenberg's inequailty

A. I. Porabkovichab, R. V. Shaninba

a Belarusian State University, Minsk
b I. I. Mechnikov Odessa National University
References:
Abstract: In work the generalization $BMO_\varphi$ of space of $BMO$ for functions on space of gomogeneous type that defined by integral $\varphi$-oscillations is studied. The analog of John–Nirenberg's inequality for functions from these classes is proved. As a corollary we prove coincidence of the classes $BMO_\varphi$ for rather wide class of functions $\varphi$. Furthermore, generalizations of Kampanato–Meyers's and Spanne's theorems are obtained.
Received: 01.10.2014
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. I. Porabkovich, R. V. Shanin, “A generalization of John–Nirenberg's inequailty”, Tr. Inst. Mat., 22:2 (2014), 63–73
Citation in format AMSBIB
\Bibitem{PorSha14}
\by A.~I.~Porabkovich, R.~V.~Shanin
\paper A generalization of John--Nirenberg's inequailty
\jour Tr. Inst. Mat.
\yr 2014
\vol 22
\issue 2
\pages 63--73
\mathnet{http://mi.mathnet.ru/timb221}
Linking options:
  • https://www.mathnet.ru/eng/timb221
  • https://www.mathnet.ru/eng/timb/v22/i2/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024