Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2014, Volume 22, Number 2, Pages 46–52 (Mi timb219)  

On the Hartsfield–Ringel hypothesis: connected unigraphs

V. N. Kalachev

Belarusian State University
References:
Abstract: The Hartsfield–Ringel hypothesis about the antimagicness of connected graphs is investigated in the class of connected unigraphs. It is proven that all connected unigraphs with no less than three vertices are antimagic.
Received: 31.01.2014
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. N. Kalachev, “On the Hartsfield–Ringel hypothesis: connected unigraphs”, Tr. Inst. Mat., 22:2 (2014), 46–52
Citation in format AMSBIB
\Bibitem{Kal14}
\by V.~N.~Kalachev
\paper On the Hartsfield--Ringel hypothesis: connected unigraphs
\jour Tr. Inst. Mat.
\yr 2014
\vol 22
\issue 2
\pages 46--52
\mathnet{http://mi.mathnet.ru/timb219}
Linking options:
  • https://www.mathnet.ru/eng/timb219
  • https://www.mathnet.ru/eng/timb/v22/i2/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024