Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2010, Volume 18, Number 2, Pages 93–98 (Mi timb21)  

On simple linear differential systems with an even matrix

E. V. Musafirov

Polesskiy State University
References:
Abstract: Conditions of simplicity of linear differential systems with an even coefficient matrix are obtained. Fundamental matrixes of solutions of linear differential systems $\dot{x}=2P(t)x$ and $\dot{x}=-2P(-t)x$ are expressed by means of reflective matrix $F(t)$ of simple system $\dot{x}=P(t)x$, $t\in\mathbb{R}$, $x\in\mathbb{R}^n$. Fundamental matrixes of solutions of systems $\dot{x}=-2kP(t)x$, $k\in\mathbb{Z}$ and $\dot{x}=-2P(t)x+\dot{P}(t)P^{-1}(t)x$ are also expressed by means of $F(t)$ under condition of evenness of matrix $P(t)$. Equivalence (in terms of coincidence of reflective functions) of last system and a simple system $\dot{x}=-2P(t)x$ with an even coefficient matrix is proved.
Received: 09.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.926.7
Language: Russian
Citation: E. V. Musafirov, “On simple linear differential systems with an even matrix”, Tr. Inst. Mat., 18:2 (2010), 93–98
Citation in format AMSBIB
\Bibitem{Mus10}
\by E.~V.~Musafirov
\paper On simple linear differential systems with an even matrix
\jour Tr. Inst. Mat.
\yr 2010
\vol 18
\issue 2
\pages 93--98
\mathnet{http://mi.mathnet.ru/timb21}
\zmath{https://zbmath.org/?q=an:05863494}
Linking options:
  • https://www.mathnet.ru/eng/timb21
  • https://www.mathnet.ru/eng/timb/v18/i2/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024