Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2013, Volume 21, Number 1, Pages 63–68 (Mi timb186)  

Finite groups with $\mathbb{P}$-subnormal biprimary subgroups

V. N. Kniahina

Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus
References:
Abstract: In this paper we study finite groups with $\mathbb{P}$-subnormal biprimary dispersive subgroups. We prove that a group all of whose biprimary $p$-closed $pd$-subgroups are $\mathbb{P}$-subnormal is $p$-solvable, where $p$ is the largest prime divisor of the order of the group. We also prove that a group with biprimary $2$-nilpotent $\mathbb{P}$-subnormal $2d$-subgroups is solvable.
Received: 11.01.2013
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Kniahina, “Finite groups with $\mathbb{P}$-subnormal biprimary subgroups”, Tr. Inst. Mat., 21:1 (2013), 63–68
Citation in format AMSBIB
\Bibitem{Kny13}
\by V.~N.~Kniahina
\paper Finite groups with $\mathbb{P}$-subnormal biprimary subgroups
\jour Tr. Inst. Mat.
\yr 2013
\vol 21
\issue 1
\pages 63--68
\mathnet{http://mi.mathnet.ru/timb186}
Linking options:
  • https://www.mathnet.ru/eng/timb186
  • https://www.mathnet.ru/eng/timb/v21/i1/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :112
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024