Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2013, Volume 21, Number 1, Pages 40–47 (Mi timb183)  

Sylow properties of finite groups

V. A. Vedernikov

Moscow City Pedagogical University
References:
Abstract: Let $\mathfrak{F}$ be a non-empty class of finite groups, and $\pi$ be some set of prime numbers. An $S_\pi$-subgroup of group $G$ that belongs to the class $\mathfrak{F}$ is called an $S_\pi(\mathfrak{F})$-subgroup of $G.$ $C_\pi(\mathfrak{F})$ is the class of all groups $G$ that have $S_\pi(\mathfrak{F})$-subgroups, and any two $S_\pi(\mathfrak{F})$-subgroups of $G$ are conjugate in $G;$ $D_\pi(\mathfrak{F})$ is the class of all $C_\pi(\mathfrak{F})$-groups $G$ in which every $\mathfrak{F}_\pi$-subgroup is contained in some $S_\pi(\mathfrak{F})$-subgroup of $G.$ In this paper the new D-theorems are obtained, a number of properties of $D_\pi(\mathfrak{F})$-groups, and $C_\pi(\mathfrak{F})$-groups are established.
Received: 11.01.2013
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. A. Vedernikov, “Sylow properties of finite groups”, Tr. Inst. Mat., 21:1 (2013), 40–47
Citation in format AMSBIB
\Bibitem{Ved13}
\by V.~A.~Vedernikov
\paper Sylow properties of finite groups
\jour Tr. Inst. Mat.
\yr 2013
\vol 21
\issue 1
\pages 40--47
\mathnet{http://mi.mathnet.ru/timb183}
Linking options:
  • https://www.mathnet.ru/eng/timb183
  • https://www.mathnet.ru/eng/timb/v21/i1/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :148
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024