Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2010, Volume 18, Number 2, Pages 60–78 (Mi timb18)  

This article is cited in 2 scientific papers (total in 2 papers)

Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph

V. V. Lepin

Belarusian State University
Full-text PDF (283 kB) Citations (2)
References:
Abstract: A multiclique is a complete multipartite subgraph of a graph. A biclique is a complete bipartite subgraph of a graph. A multiclique cover of a graph $G$ is a collection of multicliques of $G$ whose edge sets cover the edge set of $G$ (every edge of $G$ belongs to at least one multiclique of the collection). Given a multiclique cover $\mathcal{C}$ of $G$ and a vertex $v\in V(G),$ the degree $v$ on $\mathcal{C}$ is $\rho(G,\mathcal{C},v)=|\{H\in\mathcal{C}:v\in H\}|$. The degree of a multiclique cover $\mathcal{C}$ of $G$, denoted by $\rho(G,\mathcal{C})$, is defined to be: $\rho(G,\mathcal{C})=\max\limits_{v\in V(G)}\rho(G,\mathcal{C},v)$. The multiclique degree of $G$, denoted by $\rho(G)$, is the minimum value of $\rho(G,\mathcal{C})$ as $\mathcal{C}$ ranges over all coverings of $G$. Polinomial-time algorithms for computing the multiclique degree and the biclique degree of a (simple) series-parallel graph are given.
Received: 30.05.2010
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. V. Lepin, “Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph”, Tr. Inst. Mat., 18:2 (2010), 60–78
Citation in format AMSBIB
\Bibitem{Lep10}
\by V.~V.~Lepin
\paper Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph
\jour Tr. Inst. Mat.
\yr 2010
\vol 18
\issue 2
\pages 60--78
\mathnet{http://mi.mathnet.ru/timb18}
\zmath{https://zbmath.org/?q=an:05863491}
Linking options:
  • https://www.mathnet.ru/eng/timb18
  • https://www.mathnet.ru/eng/timb/v18/i2/p60
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024