|
Matrix exponents and nilpotent algebras
P. P. Zabreiko, A. N. Tanyhina Belarusian State University
Abstract:
The differentiable at zero function $f$ acting in the matrix algebra $\mathrm M_n(\mathbb C)$
($n\in\mathbb N$, $n>1$) with the properties $f(X+Y)=f(X)f(Y)$ and $f(0)=I$ is studied. The theorems about the general form of such functions are proved.
Received: 14.09.2011
Citation:
P. P. Zabreiko, A. N. Tanyhina, “Matrix exponents and nilpotent algebras”, Tr. Inst. Mat., 19:2 (2011), 37–46
Linking options:
https://www.mathnet.ru/eng/timb149 https://www.mathnet.ru/eng/timb/v19/i2/p37
|
Statistics & downloads: |
Abstract page: | 398 | Full-text PDF : | 359 | References: | 53 |
|