Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2006, Volume 14, Number 1, Pages 51–61 (Mi timb111)  

This article is cited in 8 scientific papers (total in 8 papers)

Generalized Poincaré–Sobolev inequality on metric spaces

I. A. Ivanishko, V. G. Krotov

Belarusian State University
Full-text PDF (423 kB) Citations (8)
References:
Abstract: In this work we prove the inequalities of the form
$$ |f(x_0)-f_{B(x_0,r)}|\le c\eta(r)(\mathcal{S}_\eta f(x_0))^{1-\alpha p/\gamma}\biggl(\,{\int\limits_{B(x_0,r)}\mspace{-31.5mu}{-}\mspace{11.5mu}}(\mathcal{S}_\eta f)^p\,d\mu\biggr)^{\alpha/\gamma} $$
in Lebesgue points of the function $f\in L_{\mathrm{loc}}^1(X)$. Here $0<\alpha<\gamma/p$, $\eta(t)t^{-\alpha}\uparrow$, $\eta(t)t^{-\gamma/p}\downarrow$
$$ \mathcal{S}_\eta f(x)=\sup_{B\ni x}\frac{1}{\eta(r)}{\int\limits_B\hspace{-4.5mm}{-}\mspace{7mu}}|f-f_B|\,d\mu, $$
$B=B(x,r)$ are balls in metric space (or in the homogeneous type space) $X$ with regular Borel measure $\mu$ satisfying the doubling condition of order $\gamma>0$.
We also give some other forms of such inequalities that similar to classic Poincaré inequality and show out their applications to the embedding theorems of the Sobolev type and to the “selfimproving” property of generalizad Poincaré inequality.
Received: 21.01.2005
Document Type: Article
UDC: 517.5
Language: Russian
Citation: I. A. Ivanishko, V. G. Krotov, “Generalized Poincaré–Sobolev inequality on metric spaces”, Tr. Inst. Mat., 14:1 (2006), 51–61
Citation in format AMSBIB
\Bibitem{IvaKro06}
\by I.~A.~Ivanishko, V.~G.~Krotov
\paper Generalized Poincar\'e--Sobolev inequality on metric spaces
\jour Tr. Inst. Mat.
\yr 2006
\vol 14
\issue 1
\pages 51--61
\mathnet{http://mi.mathnet.ru/timb111}
Linking options:
  • https://www.mathnet.ru/eng/timb111
  • https://www.mathnet.ru/eng/timb/v14/i1/p51
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:691
    Full-text PDF :325
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024