Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2015, Volume 20(36), Issue 1, Pages 78–83 (Mi thsp97)  

This article is cited in 1 scientific paper (total in 1 paper)

Random maps and Kolmogorov widths

I. A. Korenovska

Institute of Mathematics, National Academy of Sciences of Ukraine Tereshchenkivska Str. 3, Kiev 01601, Ukraine
Full-text PDF (269 kB) Citations (1)
References:
Abstract: In this paper we consider strong random operators. We present the sufficient conditions on a compact set in a Hilbert space under which its image under a Gaussian strong random operator is well-defined and compact. In addition, we investigate the behavior of Kolmogorov widths of some compacts under a Gaussian strong random operator.
Keywords: Gaussian strong random operator, Kolmogorov width, continuity of Gaussian processes.
Bibliographic databases:
Document Type: Article
MSC: 60B11, 60G17, 60H25
Language: English
Citation: I. A. Korenovska, “Random maps and Kolmogorov widths”, Theory Stoch. Process., 20(36):1 (2015), 78–83
Citation in format AMSBIB
\Bibitem{Kor15}
\by I.~A.~Korenovska
\paper Random maps and Kolmogorov widths
\jour Theory Stoch. Process.
\yr 2015
\vol 20(36)
\issue 1
\pages 78--83
\mathnet{http://mi.mathnet.ru/thsp97}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3502396}
\zmath{https://zbmath.org/?q=an:1363.60094}
Linking options:
  • https://www.mathnet.ru/eng/thsp97
  • https://www.mathnet.ru/eng/thsp/v20/i1/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :67
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024