Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2012, Volume 18(34), Issue 2, Pages 96–101 (Mi thsp33)  

On lattice oscillator-type Gibbs systems with superstable many-body potentials

W. I. Skrypnik

Institute of Mathematics of the NAS of Ukraine, 3, Tereshchenkivs'ka Str., Kyiv, Ukraine
References:
Abstract: The grand canonical correlation functions of lattice oscillator-type Gibbs systems with a general one-body phase measure space and many-body superstable interaction potentials are found in the thermodynamic limit at low activities as a solution of the ordered lattice Kirkwood–Salzburg equation. For special choices of the measure space, they describe the equilibrium states of lattice classical and quantum linear oscillator systems and the states of stochastic gradient lattice systems of interacting oscillators with Gibbs initial states.
Keywords: Lattice oscillator-type Gibbs systems, superstable many-body potential, thermodynamic limit, Kirkwood–Salzburg equation.
Bibliographic databases:
Document Type: Article
MSC: 70F45
Language: English
Citation: W. I. Skrypnik, “On lattice oscillator-type Gibbs systems with superstable many-body potentials”, Theory Stoch. Process., 18(34):2 (2012), 96–101
Citation in format AMSBIB
\Bibitem{Skr12}
\by W. I. Skrypnik
\paper On lattice oscillator-type Gibbs systems with superstable many-body potentials
\jour Theory Stoch. Process.
\yr 2012
\vol 18(34)
\issue 2
\pages 96--101
\mathnet{http://mi.mathnet.ru/thsp33}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3124778}
\zmath{https://zbmath.org/?q=an:1289.70020}
Linking options:
  • https://www.mathnet.ru/eng/thsp33
  • https://www.mathnet.ru/eng/thsp/v18/i2/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :39
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024