Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2020, Volume 25(41), Issue 1, Pages 1–24 (Mi thsp309)  

General inference in semiparametric models through divergences and the duality technique with applications

Salim Bouzebdaa, Mohamed Cherfib

a Alliance Sorbonne Université, Université de Technologie de Compiègne, L.M.A.C., Compiègne, France
b Département de Mathématiques, Faculté des Sciences Exactes et Informatique, University of Chlef (Université Hassiba Benbouali)
References:
Abstract: In this paper, we extend the dual divergence approach to general semiparametric models and study dual divergence estimators for semiparametric models. Asymptotic properties such as consistency, asymptotic normality of the proposed estimators are deeply investigated by mean the sophisticated modern empirical theory. We investigate the exchangeably weighted estimators in this setting and establish the consistency. We finally consider the functional $M$-estimator and obtain its weak convergence result.
Keywords: Divergences, $M$-estimators, Robust estimation, Semiparametric, Minimum distance estimators, empirical processes.
Document Type: Article
MSC: Primary 62F40; 62F35; 62F12; 62G20; 62G09; Secondary 62G30
Language: English
Citation: Salim Bouzebda, Mohamed Cherfi, “General inference in semiparametric models through divergences and the duality technique with applications”, Theory Stoch. Process., 25(41):1 (2020), 1–24
Citation in format AMSBIB
\Bibitem{BouMoh20}
\by Salim~Bouzebda, Mohamed~Cherfi
\paper General inference in semiparametric models through divergences and the duality technique with applications
\jour Theory Stoch. Process.
\yr 2020
\vol 25(41)
\issue 1
\pages 1--24
\mathnet{http://mi.mathnet.ru/thsp309}
Linking options:
  • https://www.mathnet.ru/eng/thsp309
  • https://www.mathnet.ru/eng/thsp/v25/i1/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :46
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024