Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2018, Volume 23(39), Issue 2, Pages 75–79 (Mi thsp295)  

Modelling of the queuing system with an increasing demand intensity in the empty state

L. A. Votyakova, L. I. Nakonechna

Vinnitsia Mikhailo Kotsiubynskyi State Pedagogical University, Ostrozkogo St., 32, 21000, Vinnitsia, Ukraine
References:
Abstract: The article is dedicated to formation of the served demand flow restoration function and lost demand flow restoration function when the queuing system operates with an increasing demand intensity in the empty state. The paper shows the relation between the input flow and servicing.
Keywords: Queuing system, Markov chain, transition probabilities, exponent distribution.
Document Type: Article
MSC: 60J20
Language: English
Citation: L. A. Votyakova, L. I. Nakonechna, “Modelling of the queuing system with an increasing demand intensity in the empty state”, Theory Stoch. Process., 23(39):2 (2018), 75–79
Citation in format AMSBIB
\Bibitem{VotNak18}
\by L.~A.~Votyakova, L.~I.~Nakonechna
\paper Modelling of the queuing system with an increasing demand intensity in the empty state
\jour Theory Stoch. Process.
\yr 2018
\vol 23(39)
\issue 2
\pages 75--79
\mathnet{http://mi.mathnet.ru/thsp295}
Linking options:
  • https://www.mathnet.ru/eng/thsp295
  • https://www.mathnet.ru/eng/thsp/v23/i2/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025