Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2018, Volume 23(39), Issue 1, Pages 93–97 (Mi thsp266)  

Power moments of first passage times for some oscillating perturbed random walks

B. Rashytov

Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, 01601, Kyiv, Ukraine
References:
Abstract: Let $(\xi_1,\eta_1)$, $(\xi_2, \eta_2),\ldots$ be a sequence of i.i.d. random vectors taking values in $\mathbb{R}^2$, and let $S_0:=0$ and $S_n:=\xi_1+\ldots+\ldots\xi_n$ for $n\in\mathbb{N}$. The sequence $(S_{n-1}+\eta_n)_{n\in\mathbb{N}}$ is then called perturbed random walk. For real $x$, denote by $\tau(x)$ the first time the perturbed random walk exits the interval $(-\infty, x]$. We consider a rather intricate case in which $S_n$ drifts to the left, yet the perturbed random walk oscillates because of occasional big jumps to the right of the perturbating sequence $(\eta_n)_{n\in{\mathbb N}}$. Under these assumptions we provide necessary and sufficient conditions for the finiteness of power moments of $\tau(x)$, there by solving an open problem posed by Alsmeyer, Iksanov and Meiners in [2].
Keywords: First passage time, perturbed random walk, power moment.
Bibliographic databases:
Document Type: Article
MSC: Primary 60G50; Secondary 60G40
Language: English
Citation: B. Rashytov, “Power moments of first passage times for some oscillating perturbed random walks”, Theory Stoch. Process., 23(39):1 (2018), 93–97
Citation in format AMSBIB
\Bibitem{Ras18}
\by B.~Rashytov
\paper Power moments of first passage times for some oscillating perturbed random walks
\jour Theory Stoch. Process.
\yr 2018
\vol 23(39)
\issue 1
\pages 93--97
\mathnet{http://mi.mathnet.ru/thsp266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3948509}
\zmath{https://zbmath.org/?q=an:07068459}
Linking options:
  • https://www.mathnet.ru/eng/thsp266
  • https://www.mathnet.ru/eng/thsp/v23/i1/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :54
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024