Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2018, Volume 23(39), Issue 1, Pages 82–92 (Mi thsp265)  

Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion

B. L. S. Prakasa Rao

CR Rao Advanced Institute of Research in Mathematics, Statistics and Computer Science, Hyderabad 500046, India
References:
Abstract: We obtain a Berry-Esseen type bound for the distribution of the maximum likelihood estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion.
Keywords: Fractional Ornstein-Uhlenbeck type process, sub-fractional Brownian motion, Maximum likelihood estimation, Berry-Esseen type bound.
Bibliographic databases:
Document Type: Article
MSC: Primary 62M09; Secondary 60G22
Language: English
Citation: B. L. S. Prakasa Rao, “Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion”, Theory Stoch. Process., 23(39):1 (2018), 82–92
Citation in format AMSBIB
\Bibitem{Pra18}
\by B.~L.~S.~Prakasa Rao
\paper Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion
\jour Theory Stoch. Process.
\yr 2018
\vol 23(39)
\issue 1
\pages 82--92
\mathnet{http://mi.mathnet.ru/thsp265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3948508}
\zmath{https://zbmath.org/?q=an:07068458}
Linking options:
  • https://www.mathnet.ru/eng/thsp265
  • https://www.mathnet.ru/eng/thsp/v23/i1/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :57
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024