Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2018, Volume 23(39), Issue 1, Pages 18–52 (Mi thsp261)  

Tuning of a Bayesian estimator under discrete time observations and unknown transition density

Arturo Kohatsu-Higaa, Nicolas Vayatisb, Kazuhiro Yasudec

a Ritsumeikan University
b ENS de Cachan
c Hosei University
References:
Abstract: We study the asymptotic behaviour of a Bayesian parameter estimation method on a compact one-dimensional parameter space. The estimation procedure is considered under discrete observations and unknown transition density. Here, we observe the data with constant time steps and the transition density of the data is approximated by using a kernel density estimation method applied to the Monte Carlo simulations of approximations of the theoretical random variables generating the observations. We estimate the error between the theoretical estimator, which assumes the knowledge of the transition density and its approximation which uses the simulation. We prove the strong consistency of the approximated estimator and find the order of the error. Most importantly, we give a parameter tuning result which relates the number of data, the weak error in the approximation process, the number of the Monte-Carlo simulations and the bandwidth size of the kernel density estimation. A guiding example for this situation is the use of Monte Carlo simulations of the Euler scheme for Bayesian estimation in a diffusion setting.
Keywords: Diffusion process, Bayesian estimation, Monte Carlo simulation.
Bibliographic databases:
Document Type: Article
MSC: 65C30, 62F15
Language: English
Citation: Arturo Kohatsu-Higa, Nicolas Vayatis, Kazuhiro Yasude, “Tuning of a Bayesian estimator under discrete time observations and unknown transition density”, Theory Stoch. Process., 23(39):1 (2018), 18–52
Citation in format AMSBIB
\Bibitem{KohVayYas18}
\by Arturo~Kohatsu-Higa, Nicolas~Vayatis, Kazuhiro~Yasude
\paper Tuning of a Bayesian estimator under discrete time observations and unknown transition density
\jour Theory Stoch. Process.
\yr 2018
\vol 23(39)
\issue 1
\pages 18--52
\mathnet{http://mi.mathnet.ru/thsp261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3948504}
\zmath{https://zbmath.org/?q=an:07068454}
Linking options:
  • https://www.mathnet.ru/eng/thsp261
  • https://www.mathnet.ru/eng/thsp/v23/i1/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :47
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024