Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2017, Volume 22(38), Issue 1, Pages 71–80 (Mi thsp172)  

On a limit behavior of a random walk with modifications upon each visit to zero

Andrey Pilipenkoab, Vladislav Khomenkob

a Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
b National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
References:
Abstract: We consider the limit behavior of a one-dimensional random walk with unit jumps whose transition probabilities are modified every time the walk hits zero. The invariance principle is proved in the scheme of series where the size of modifications depends on the number of series. For the natural scaling of time and space arguments the limit process is (i) a Brownian motion if modifications are “small”, (ii) a linear motion with a random slope if modifications are “large”, and (iii) the limit process satisfies an SDE with a local time of unknown process in a drift if modifications are “moderate”.
Keywords: Invariance principle, self-interacting random walk, perturbed random walk.
Bibliographic databases:
Document Type: Article
MSC: 60F17, 60J50, 60J55
Language: English
Citation: Andrey Pilipenko, Vladislav Khomenko, “On a limit behavior of a random walk with modifications upon each visit to zero”, Theory Stoch. Process., 22(38):1 (2017), 71–80
Citation in format AMSBIB
\Bibitem{PilKho17}
\by Andrey~Pilipenko, Vladislav~Khomenko
\paper On a limit behavior of a random walk with modifications upon each visit to zero
\jour Theory Stoch. Process.
\yr 2017
\vol 22(38)
\issue 1
\pages 71--80
\mathnet{http://mi.mathnet.ru/thsp172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3742390}
\zmath{https://zbmath.org/?q=an:1399.60066}
Linking options:
  • https://www.mathnet.ru/eng/thsp172
  • https://www.mathnet.ru/eng/thsp/v22/i1/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :54
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024