Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2017, Volume 22(38), Issue 1, Pages 62–70 (Mi thsp171)  

Scale parameter estimation of discrete scale invariant processes

Y. Maleki

Alzahra University, Vanak st, Tehran, Iran
References:
Abstract: Estimating the scale parameter of a continuous-time discrete scale invariant (DSI) process is one of the fundamental problems in the literature. We present an efficient estimation method which is based on transforming the DSI process into a vector-valued self-similar process and allows us to obtain the structure of the covariance matrix, which is the product of a scale and a block-Toeplitz matrices, and its block size depends on the unknown scale parameter. Therefore, we sweep the block size and obtain the maximum likelihood (ML) estimate of the scale parameter. We show that, the ML estimator does not directly solve the scale estimation problem. Hence, we penalize the likelihood following an information theoretic approach. The performance of the estimation method is studied via simulation. Finally this method is applied to the real data of S$\&$P500 and Dow Jones indices for some special periods.
Keywords: Discrete scale invariance, Multi-dimensional self-similar process, Scale parameter estimation.
Bibliographic databases:
Document Type: Article
MSC: 60G18 ; 62F30
Language: English
Citation: Y. Maleki, “Scale parameter estimation of discrete scale invariant processes”, Theory Stoch. Process., 22(38):1 (2017), 62–70
Citation in format AMSBIB
\Bibitem{Mal17}
\by Y.~Maleki
\paper Scale parameter estimation of discrete scale invariant processes
\jour Theory Stoch. Process.
\yr 2017
\vol 22(38)
\issue 1
\pages 62--70
\mathnet{http://mi.mathnet.ru/thsp171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3742389}
\zmath{https://zbmath.org/?q=an:1399.60069}
Linking options:
  • https://www.mathnet.ru/eng/thsp171
  • https://www.mathnet.ru/eng/thsp/v22/i1/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :57
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024