Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2016, Volume 21(37), Issue 1, Pages 91–101 (Mi thsp124)  

On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift

M. V. Tantsiura

Institute of Mathematics, National Academy of sciences of Ukraine
References:
Abstract: A countable system of stochastic differential equations is considered. A theorem on existence and uniqueness of a strong solution is proved if drift and diffusion coefficients satisfy finite interaction radius condition.
Keywords: Stochastic differential equation; strong solution; pathwise uniqueness; interacting particle system.
Bibliographic databases:
Document Type: Article
MSC: Primary 60H10; Secondary 60J60
Language: English
Citation: M. V. Tantsiura, “On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift”, Theory Stoch. Process., 21(37):1 (2016), 91–101
Citation in format AMSBIB
\Bibitem{Tan16}
\by M.~V.~Tantsiura
\paper On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
\jour Theory Stoch. Process.
\yr 2016
\vol 21(37)
\issue 1
\pages 91--101
\mathnet{http://mi.mathnet.ru/thsp124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3571416}
Linking options:
  • https://www.mathnet.ru/eng/thsp124
  • https://www.mathnet.ru/eng/thsp/v21/i1/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025