Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2016, Volume 21(37), Issue 1, Pages 1–11 (Mi thsp115)  

On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes

V. I. Bogachevabc, A. F. Miftakhovabc

a Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia
b St.-Tikhon’s Orthodox Humanitarian University, Moscow, Russia
c National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: We study conditions on metrics on spaces of measurable functions under which weak convergence of Borel probability measures on these spaces follows from weak convergence of finite-dimensional projections of the considered measures.
Keywords: Convergence in measure, weak convergence, finite-dimensional distributions.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-90406
14-01-00237
Universität Bielefeld SFB 701
Our work has been supported by the RFBR grants 14-01-90406, 14-01-00237 and the SFB 701 at Bielefeld University.
Bibliographic databases:
Document Type: Article
MSC: 46G12, 60B10, 60G07
Language: English
Citation: V. I. Bogachev, A. F. Miftakhov, “On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes”, Theory Stoch. Process., 21(37):1 (2016), 1–11
Citation in format AMSBIB
\Bibitem{BogMif16}
\by V.~I.~Bogachev, A.~F.~Miftakhov
\paper On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
\jour Theory Stoch. Process.
\yr 2016
\vol 21(37)
\issue 1
\pages 1--11
\mathnet{http://mi.mathnet.ru/thsp115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3571407}
\zmath{https://zbmath.org/?q=an:1363.60003}
\elib{https://elibrary.ru/item.asp?id=27577756}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992344895}
Linking options:
  • https://www.mathnet.ru/eng/thsp115
  • https://www.mathnet.ru/eng/thsp/v21/i1/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:751
    Full-text PDF :362
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025