Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2015, Volume 20(36), Issue 2, Pages 97–104 (Mi thsp105)  

This article is cited in 1 scientific paper (total in 1 paper)

On a limit behavior of a one-dimensional random walk with non-integrable impurity

Andrey Pilipenkoab, Lyudmila Sakhanenkoc

a National Technical University of Ukraine "Kyiv Polytechnical Institute"
b Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
c Department of Probability and Statistics, Michigan State University, East Lansing, USA
Full-text PDF (248 kB) Citations (1)
References:
Abstract: We consider the limit behavior of a one-dimensional symmetric random walk that is perturbed at zero. For the natural scaling of time and space the invariance principle is proved. The limit process is a skew Brownian motion.
Keywords: Skew Brownian motion, invariance principle, perturbed random walk.
Funding agency Grant number
National Academy of Sciences of Ukraine 09-01-14
Bibliographic databases:
Document Type: Article
MSC: 60F17, 60J50, 60J55
Language: English
Citation: Andrey Pilipenko, Lyudmila Sakhanenko, “On a limit behavior of a one-dimensional random walk with non-integrable impurity”, Theory Stoch. Process., 20(36):2 (2015), 97–104
Citation in format AMSBIB
\Bibitem{PilSak15}
\by Andrey Pilipenko, Lyudmila Sakhanenko
\paper On a limit behavior of a one-dimensional random walk with non-integrable impurity
\jour Theory Stoch. Process.
\yr 2015
\vol 20(36)
\issue 2
\pages 97--104
\mathnet{http://mi.mathnet.ru/thsp105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3510231}
\zmath{https://zbmath.org/?q=an:1363.60098}
Linking options:
  • https://www.mathnet.ru/eng/thsp105
  • https://www.mathnet.ru/eng/thsp/v20/i2/p97
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :71
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024