Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal SVMO:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 2016, Volume 18, Number 2, Pages 59–66 (Mi svmo594)  

Mathematics

Continuity of topological entropy for piecewise smooth Lorenz type mappings

M. I. Malkin, K. A. Saphonov

Lobachevski State University of Nizhni Novgorod
References:
Abstract: For one-dimensional mappings of Lorenz type, the problem on behavior of the topological entropy as the function of a mapping is studied. In the previous paper the authors proved that entropy as the function of a mapping with $C^0$-topology can have jumps only for exceptional case, namely, in a neighbourhood of a mapping with zero entropy, and moreover, if and only if two kneading invariants are periodic with the same period. In the present paper we show that for the class of Lorenz mappings having zero one-sided derivatives at the discontinuity point and with $C^1$-topology, such an exceptional case is impossible, and thus the entropy depends continously on the mapping.
Keywords: topological entropy, Lorenz type mappings, kneading invariant.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00344
15-01-03687-а
Bibliographic databases:
Document Type: Article
UDC: 512.917+513.9
Language: Russian
Citation: M. I. Malkin, K. A. Saphonov, “Continuity of topological entropy for piecewise smooth Lorenz type mappings”, Zhurnal SVMO, 18:2 (2016), 59–66
Citation in format AMSBIB
\Bibitem{MalSap16}
\by M.~I.~Malkin, K.~A.~Saphonov
\paper Continuity of topological entropy for piecewise smooth Lorenz type mappings
\jour Zhurnal SVMO
\yr 2016
\vol 18
\issue 2
\pages 59--66
\mathnet{http://mi.mathnet.ru/svmo594}
\elib{https://elibrary.ru/item.asp?id=26322692}
Linking options:
  • https://www.mathnet.ru/eng/svmo594
  • https://www.mathnet.ru/eng/svmo/v18/i2/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :70
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024