Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal SVMO:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 2016, Volume 18, Number 2, Pages 41–46 (Mi svmo592)  

Mathematics

Identification of fractional-order ARX Wiener systems in the presence of noise in the input signals

D. V. Ivanov

Samara State Transport University
References:
Abstract: The paper describes the parametric identification of fractional-order Wiener ARX (Autoregressive with exogenous input) systems in the presence of noise in the input signals. The criterion for evaluating the parameters of these systems is proposed which is a generalization of the method of least squares. It is proved that the interference class martingale-difference derived parameter estimates will have the property of strong consistency. It is shown that in the case of constant noise variance to obtain consistent estimates it is sufficient to know the ratio of their variances.
Keywords: parametric identification, Wiener system, a difference of fractional order, errors in variables, least squares, consistent estimator.
Bibliographic databases:
Document Type: Article
UDC: 519.254
Language: Russian
Citation: D. V. Ivanov, “Identification of fractional-order ARX Wiener systems in the presence of noise in the input signals”, Zhurnal SVMO, 18:2 (2016), 41–46
Citation in format AMSBIB
\Bibitem{Iva16}
\by D.~V.~Ivanov
\paper Identification of fractional-order ARX Wiener systems in the presence of noise in the input signals
\jour Zhurnal SVMO
\yr 2016
\vol 18
\issue 2
\pages 41--46
\mathnet{http://mi.mathnet.ru/svmo592}
\elib{https://elibrary.ru/item.asp?id=26322690}
Linking options:
  • https://www.mathnet.ru/eng/svmo592
  • https://www.mathnet.ru/eng/svmo/v18/i2/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :29
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024