Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal SVMO:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 2016, Volume 18, Number 1, Pages 27–30 (Mi svmo576)  

Mathematics

On the number of linear particular integrals of polynomial vector fields

M. V. Dolov, E. V. Kruglov

Lobachevski State University of Nizhni Novgorod
References:
Abstract: In this paper we consider the ordinary differential equation $P(x,y)dy-Q(x,y)dx=0$ where $P$, $Q$ are relatively prime polynomials of degree, greater than 1. Coefficients of the equations and variables x, y may be complex. We prove that when this equation has an infinite number of linear partial integrals, the polynomials $P$, $Q$ can not be relatively prime. The main result of the paper contains an accurate estimate of the number of different linear particular integrals; estimate of the number of linear integrals when the invariant sets corresponding to line integrals have no points in common; estimate of the number of line integrals in a case where they have a common singular point. The method of proof essentially uses the initial assumption that the polynomials $P$, $Q$ are relatively prime. An example is given that implements proven result.
Keywords: polynomial vector fields, linear particular integrals, differential equations.
Bibliographic databases:
Document Type: Article
UDC: 517.925
Language: Russian
Citation: M. V. Dolov, E. V. Kruglov, “On the number of linear particular integrals of polynomial vector fields”, Zhurnal SVMO, 18:1 (2016), 27–30
Citation in format AMSBIB
\Bibitem{DolKru16}
\by M.~V.~Dolov, E.~V.~Kruglov
\paper On the number of linear particular integrals of
polynomial vector fields
\jour Zhurnal SVMO
\yr 2016
\vol 18
\issue 1
\pages 27--30
\mathnet{http://mi.mathnet.ru/svmo576}
\elib{https://elibrary.ru/item.asp?id=26322417}
Linking options:
  • https://www.mathnet.ru/eng/svmo576
  • https://www.mathnet.ru/eng/svmo/v18/i1/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :33
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024