Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal SVMO:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 2016, Volume 18, Number 1, Pages 12–16 (Mi svmo574)  

Mathematics

On the existence of periodic orbits for continuous Morse-Smale flows

V. Z. Grinesa, E. V. Zhuzhomaa, S. V. Medvedeva, N. A. Tarasovab

a State University – Higher School of Economics in Nizhnii Novgorod
b Institute of food technology and design, Nizhny Novgorod
References:
Abstract: We consider the class of continuous Morse-Smale flows defined on a topological closed manifold $M^n$ of dimension $n$ which is not less than three, and such that the stable and unstable manifolds of saddle equilibrium states do not have intersection. We establish a relationship between the existence of such flows and topology of closed trajectories and topology of ambient manifold. Namely, it is proved that if $f^t$ (that is a continuous Morse-Smale flow from considered class) has $\mu$ sink and source equilibrium states and $\nu$ saddles of codimension one, and the fundamental group $\pi_1 (M ^ n)$ does not contain a subgroup isomorphic to the free product $g =\frac {1} {2} \left (\nu - \mu +2\right)$ copies of the group of integers $\mathbb {Z} $, then the flow $ f^t$ has at least one periodic trajectory.
Keywords: Morse-Smale flows, periodic orbits, heteroclinic orbits.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03689-а
14-41-00044
HSE Basic Research Program 98
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: V. Z. Grines, E. V. Zhuzhoma, S. V. Medvedev, N. A. Tarasova, “On the existence of periodic orbits for continuous Morse-Smale flows”, Zhurnal SVMO, 18:1 (2016), 12–16
Citation in format AMSBIB
\Bibitem{GriZhuMed16}
\by V.~Z.~Grines, E.~V.~Zhuzhoma, S.~V.~Medvedev, N.~A.~Tarasova
\paper On the existence of periodic orbits for continuous Morse-Smale flows
\jour Zhurnal SVMO
\yr 2016
\vol 18
\issue 1
\pages 12--16
\mathnet{http://mi.mathnet.ru/svmo574}
\elib{https://elibrary.ru/item.asp?id=26322415}
Linking options:
  • https://www.mathnet.ru/eng/svmo574
  • https://www.mathnet.ru/eng/svmo/v18/i1/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :31
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024