Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2023, Volume 30, Issue 4, Pages 12–23
DOI: https://doi.org/10.25587/2411-9326-2023-4-12-23
(Mi svfu397)
 

Mathematics

Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations

A. I. Kozhanova, D. S. Khromchenkob

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Abstract: We study the solvability in anisotropic Sobolev spaces of nonlocal boundary problems for the third order quasi-parabolic equations with an integrally-disturbed Samarskii condition. A uniqueness and existence theorem is proved for regular solutions (i. e. the solutions that have all generalized derivatives that were used in equation).
Keywords: quasi-parabolic equations, nonlocal problems, Samarsky condition, regular solution, existence, uniqueness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF–2022–0008
Received: 01.11.2023
Accepted: 30.11.2023
Document Type: Article
UDC: 519.95
Language: Russian
Citation: A. I. Kozhanov, D. S. Khromchenko, “Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations”, Mathematical notes of NEFU, 30:4 (2023), 12–23
Citation in format AMSBIB
\Bibitem{KozKhr23}
\by A.~I.~Kozhanov, D.~S.~Khromchenko
\paper Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations
\jour Mathematical notes of NEFU
\yr 2023
\vol 30
\issue 4
\pages 12--23
\mathnet{http://mi.mathnet.ru/svfu397}
\crossref{https://doi.org/10.25587/2411-9326-2023-4-12-23}
Linking options:
  • https://www.mathnet.ru/eng/svfu397
  • https://www.mathnet.ru/eng/svfu/v30/i4/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024