Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2016, Volume 23, Issue 4, Pages 46–57 (Mi svfu38)  

Mathematics

Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account

S. G. Pyatkovab, V. V. Rotkoa

a Yugra State University, 16 Chekhov Street, Khanty-Mansyisk 628012, Russia
b Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
References:
Abstract: We examine the question of well-posedness in the Sobolev spaces of an inverse problem of determining a source function in a system comprising a parabolic equation and an ordinary differential equation. The overdetermination conditions are the values of concentration of an admixture at separate points. We prove existence and uniqueness of solutions to the problem.
Keywords: parabolic equation, inverse problem, heat-and-mass transfer, boundary value problem, source function.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-00063
Received: 20.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. G. Pyatkov, V. V. Rotko, “Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account”, Mathematical notes of NEFU, 23:4 (2016), 46–57
Citation in format AMSBIB
\Bibitem{PyaRot16}
\by S.~G.~Pyatkov, V.~V.~Rotko
\paper Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account
\jour Mathematical notes of NEFU
\yr 2016
\vol 23
\issue 4
\pages 46--57
\mathnet{http://mi.mathnet.ru/svfu38}
\elib{https://elibrary.ru/item.asp?id=29959201}
Linking options:
  • https://www.mathnet.ru/eng/svfu38
  • https://www.mathnet.ru/eng/svfu/v23/i4/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :71
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024