Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2016, Volume 23, Issue 4, Pages 19–30 (Mi svfu36)  

Mathematics

On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation

I. E. Egorov

M. K. Ammosov North-Eastern Federal University, Research Institute of Mathematics, Kulakovskii Street, 48, Yakutsk 677000, Russia
References:
Abstract: We consider the boundary value problem of V. N. Vragov for mixed type equations of even order with elliptic operator in space variables. We prove the generalized solvability, dense solvability, uniqueness of generalized solutions and Fredholm solvability of the boundary value problem in the corresponding Sobolev spaces.
Keywords: mixed type equation, Fredholm solvability, boundary value problem, generalized solution, inequality, evaluation, operator equation.
Received: 15.11.2016
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: I. E. Egorov, “On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation”, Mathematical notes of NEFU, 23:4 (2016), 19–30
Citation in format AMSBIB
\Bibitem{Ego16}
\by I.~E.~Egorov
\paper On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation
\jour Mathematical notes of NEFU
\yr 2016
\vol 23
\issue 4
\pages 19--30
\mathnet{http://mi.mathnet.ru/svfu36}
\elib{https://elibrary.ru/item.asp?id=29959199}
Linking options:
  • https://www.mathnet.ru/eng/svfu36
  • https://www.mathnet.ru/eng/svfu/v23/i4/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :62
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024