Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2022, Volume 29, Issue 2, Pages 88–100
DOI: https://doi.org/10.25587/SVFU.2022.49.45.008
(Mi svfu353)
 

Mathematics

On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness

A. Tani

Department of Mathematics, Faculty of Science and Technology, Keio University
Abstract: In [1] we showed the global-in-time solvability of the initial-boundary value problem for the non-conserved phase-field model proposed by Penrose and Fife [2, 3] under the correct form of flux boundary condition for the temperature field in higher space dimensions. In this paper we discuss the uniform boundedness up to the infinite time of its solution in Sobolev-Slobodetskiĭ spaces.
Keywords: non-conserved phase-field equations, Penrose–Fife type, flux boundary condition, uniform boundedness of strong solution in Sobolev–Slobodetskiĭ spaces.
Received: 04.04.2021
Accepted: 31.05.2022
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. Tani, “On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness”, Mathematical notes of NEFU, 29:2 (2022), 88–100
Citation in format AMSBIB
\Bibitem{Tan22}
\by A.~Tani
\paper On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness
\jour Mathematical notes of NEFU
\yr 2022
\vol 29
\issue 2
\pages 88--100
\mathnet{http://mi.mathnet.ru/svfu353}
\crossref{https://doi.org/10.25587/SVFU.2022.49.45.008}
Linking options:
  • https://www.mathnet.ru/eng/svfu353
  • https://www.mathnet.ru/eng/svfu/v29/i2/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024