Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2016, Volume 23, Issue 4, Pages 3–18 (Mi svfu35)  

Mathematics

A linear inverse problem for a mixed type operator-differential equation with a parameter

N. L. Abasheievaab

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Novosibirsk State University, 2 Pirogov Street, 2, Novosibirsk 630090, Russia
References:
Abstract: We study the inverse problem
$$Bu_t+pLu=\varphi (t)+f(t, p),\quad u(0, p)=u(T,p)=0.$$
The operators $B,\,L$ are selfadjoint in the Hilbert space $E$ and the spectrum of the operator $L$ is semibounded. The unique solvability of this problem is proved with using a series expansion in eigen and associated elements of the pencil $L-\lambda B.$
Keywords: inverse problem, mixed type equation.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-06582
Received: 30.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: N. L. Abasheieva, “A linear inverse problem for a mixed type operator-differential equation with a parameter”, Mathematical notes of NEFU, 23:4 (2016), 3–18
Citation in format AMSBIB
\Bibitem{Aba16}
\by N.~L.~Abasheieva
\paper A linear inverse problem for a mixed type operator-differential equation with a parameter
\jour Mathematical notes of NEFU
\yr 2016
\vol 23
\issue 4
\pages 3--18
\mathnet{http://mi.mathnet.ru/svfu35}
\elib{https://elibrary.ru/item.asp?id=29959198}
Linking options:
  • https://www.mathnet.ru/eng/svfu35
  • https://www.mathnet.ru/eng/svfu/v23/i4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :47
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024