|
Mathematics
A linear inverse problem for a mixed type operator-differential equation with a parameter
N. L. Abasheievaab a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Novosibirsk State University, 2 Pirogov Street, 2, Novosibirsk 630090, Russia
Abstract:
We study the inverse problem $$Bu_t+pLu=\varphi (t)+f(t, p),\quad u(0, p)=u(T,p)=0.$$ The operators $B,\,L$ are selfadjoint in the Hilbert space $E$ and the spectrum of the operator $L$ is semibounded. The unique solvability of this problem is proved with using a series expansion in eigen and associated elements of the pencil $L-\lambda B.$
Keywords:
inverse problem, mixed type equation.
Received: 30.09.2016
Citation:
N. L. Abasheieva, “A linear inverse problem for a mixed type operator-differential equation with a parameter”, Mathematical notes of NEFU, 23:4 (2016), 3–18
Linking options:
https://www.mathnet.ru/eng/svfu35 https://www.mathnet.ru/eng/svfu/v23/i4/p3
|
Statistics & downloads: |
Abstract page: | 114 | Full-text PDF : | 47 | References: | 37 |
|