Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2021, Volume 28, Issue 3, Pages 19–30
DOI: https://doi.org/10.25587/SVFU.2021.91.97.002
(Mi svfu323)
 

Mathematics

Degeneration in differential equations with multiple characteristics

A. I. Kozhanovab, G. A. Lukinac

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Academy of Science of the Republic of Sakha (Yakutia), 33 Lenin Avenue, Yakutsk 677007, Russia
c Ammosov North-Eastern Federal University, Mirny Polytechnic Institute, 5/1 Tikhonov Street, Mirny 678175, Russia
Abstract: We study the solvability of boundary value problems for the differential equations
$$ \varphi(t)u_t+(-1)^m\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t),\\ \varphi(t)u_{tt}+(-1)^{m+1}\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t), $$
where $x\in(0,1)$, $t\in(0,T),$ $m$ is a non-negative integer, $D^k_x=\frac{\partial^k}{\partial x^k}$ ($D^1_x=D_x$), while the functions $\varphi(t)$ and $\psi(t)$ are non-negative and vanish at some points of the segment $[0,T]$. We prove the existence and uniqueness theorems for the regular solutions, those having all generalized Sobolev derivatives required in the equation, in the inner subdomains.
Keywords: differential equations with multiple characteristics, degeneration, boundary value problem, regular solution, existence, uniqueness.
Received: 19.05.2021
Accepted: 26.08.2021
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: A. I. Kozhanov, G. A. Lukina, “Degeneration in differential equations with multiple characteristics”, Mathematical notes of NEFU, 28:3 (2021), 19–30
Citation in format AMSBIB
\Bibitem{KozLuk21}
\by A.~I.~Kozhanov, G.~A.~Lukina
\paper Degeneration in differential equations with multiple characteristics
\jour Mathematical notes of NEFU
\yr 2021
\vol 28
\issue 3
\pages 19--30
\mathnet{http://mi.mathnet.ru/svfu323}
\crossref{https://doi.org/10.25587/SVFU.2021.91.97.002}
\elib{https://elibrary.ru/item.asp?id=46670174 }
Linking options:
  • https://www.mathnet.ru/eng/svfu323
  • https://www.mathnet.ru/eng/svfu/v28/i3/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024