Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2021, Volume 28, Issue 1, Pages 27–36
DOI: https://doi.org/10.25587/SVFU.2021.85.42.003
(Mi svfu308)
 

Mathematics

Boundary value problems for third-order pseudoelliptic equations with degeneration

A. I. Kozhanovab

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Academy of Science of the Republic of Sakha (Yakutia), 33 Lenin Ave., Yakutsk 677007, Russia
Abstract: We study the solvability of boundary value problems in cylindrical domains $Q=\Omega\times(0,T)$, $\Omega\subset\mathbb{R}^n$, $0<T<+\infty$, for differential equations
$$ h(t)\frac{\partial^{2p+1}u}{\partial t^{2p+1}}+(-1)^{p+1}\Delta u+c(x,t)u=f(x,t), $$
where $p$ is a non-negative integer, $h(t)$ is continuous on the segment $[0, T]$ a function such that $\varphi(t)>0$ for $t\in(0,T)$, $\varphi(0)\ge0$, $\varphi(T)\ge0$, and $\Delta$ is the Laplace operator in spatial variables $x_1,\dots, x_n$. The main feature of the problems under study is that, despite the degeneration, the boundary manifolds are not exempt to the bearing boundary conditions. We proved the existence and uniqueness theorems of the regular solutions, those having all Sobolev generalized derivatives included in the equation. Moreover, we describe some possible enhancements and generalizations of the obtained results.
Keywords: quasi-parabolic equations, degeneration, boundary value problem, regular solution, existence, uniqueness.
Received: 20.02.2021
Accepted: 26.02.2021
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: A. I. Kozhanov, “Boundary value problems for third-order pseudoelliptic equations with degeneration”, Mathematical notes of NEFU, 28:1 (2021), 27–36
Citation in format AMSBIB
\Bibitem{Koz21}
\by A.~I.~Kozhanov
\paper Boundary value problems for third-order pseudoelliptic equations with degeneration
\jour Mathematical notes of NEFU
\yr 2021
\vol 28
\issue 1
\pages 27--36
\mathnet{http://mi.mathnet.ru/svfu308}
\crossref{https://doi.org/10.25587/SVFU.2021.85.42.003}
\elib{https://elibrary.ru/item.asp?id=45658538 }
Linking options:
  • https://www.mathnet.ru/eng/svfu308
  • https://www.mathnet.ru/eng/svfu/v28/i1/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024