Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2020, Volume 27, Issue 4, Pages 14–29
DOI: https://doi.org/10.25587/SVFU.2020.57.53.002
(Mi svfu299)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On the solvability of the inverse problems of parameter recovery in elliptic equations

A. I. Kozhanovab

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russia
Full-text PDF (314 kB) Citations (1)
Abstract: We study solvability of the inverse problems of finding, alongside the solution $u(x,t)$, the positive parameter $\alpha$ in the differential equations
$$ u_{tt}+\alpha\Delta u-\beta u=f(x,t),\quad\alpha u_{tt}+\Delta u-\beta u=f(x,t), $$
where $t\in(0,T)$, $x=(x_1,\dots,x_n)\in\Omega\subset\mathbb{R}^n$, and $\Delta$ – the Laplace operator in variables $x_1,\dots,x_n$. As a complement to the boundary conditions defining a well-posed boundary value problem for elliptic equations, we use the conditions of the linear final integral overdetermination. We prove the existence and uniqueness theorems for regular solutions, those having all generalized in the S. L. Sobolev sense derivatives in the equation.
Keywords: elliptic equation, unknown coefficient, final-integral overdetermination condition, regular solution, existence, uniqueness.
Funding agency Grant number
Scientific Committee of Kazakhstan AP05132041
The work is supported by the Scientific Committee of Kazakhstan (Grant AP05132041)
Received: 08.10.2020
Accepted: 29.11.2020
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: A. I. Kozhanov, “On the solvability of the inverse problems of parameter recovery in elliptic equations”, Mathematical notes of NEFU, 27:4 (2020), 14–29
Citation in format AMSBIB
\Bibitem{Koz20}
\by A.~I.~Kozhanov
\paper On the solvability of the inverse problems of parameter recovery in elliptic equations
\jour Mathematical notes of NEFU
\yr 2020
\vol 27
\issue 4
\pages 14--29
\mathnet{http://mi.mathnet.ru/svfu299}
\crossref{https://doi.org/10.25587/SVFU.2020.57.53.002}
\elib{https://elibrary.ru/item.asp?id=44602396}
Linking options:
  • https://www.mathnet.ru/eng/svfu299
  • https://www.mathnet.ru/eng/svfu/v27/i4/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024