Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2020, Volume 27, Issue 2, Pages 77–92
DOI: https://doi.org/10.25587/SVFU.2020.47.81.005
(Mi svfu286)
 

Mathematical modeling

Numerical homogenization for heat transfer problems in the permafrost zone

V. N. Alekseeva, A. A. Tyrylgina, M. V. Vasilyevabc, V. I. Vasilievb

a International Research Laboratory "Multiscale model reduction", North-Eastern Federal University named after M. K. Ammosov, Ammosov North-Eastern Federal University, 42 Kulakovsky Street, Yakutsk 677980, Russia
b North-Eastern Federal University named after M. K. Ammosov, 42 Kulakovsky Street, Yakutsk 677980, Russia
c Institute for Scientific Computation, Texas AM University, College Station, TX 77843-3368
Abstract: The work considers heat transfer problems taking into account phase transitions of moisture in the soil. The mathematical model of heat transfer processes with phase transition is described using the classical Stefan model and is a nonlinear parabolic equation. To solve the problem, a numerical homogenization method is proposed for the nonlinear problem using the effective thermal conductivity coefficient for thawed and frozen zones. The calculation of the effective thermal conductivity tensor is carried out in local domains (coarse mesh cells) and is used to construct the approximation on a coarse mesh by the finite element method. Numerical implementation was carried out using FEniCS computational library for finite element approximation. Numerical results are presented for the model problem in two-dimensional and three-dimensional formulations.
Keywords: FEniCS, mathematical modeling, heat transfer, phase transition, the Stefan problem, numerical homogenization, the finite element method, FEniCS.
Funding agency Grant number
Russian Science Foundation 19-11-00230
Received: 05.12.2019
Revised: 06.02.2020
Accepted: 30.04.2020
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. N. Alekseev, A. A. Tyrylgin, M. V. Vasilyeva, V. I. Vasiliev, “Numerical homogenization for heat transfer problems in the permafrost zone”, Mathematical notes of NEFU, 27:2 (2020), 77–92
Citation in format AMSBIB
\Bibitem{AleTyrVas20}
\by V.~N.~Alekseev, A.~A.~Tyrylgin, M.~V.~Vasilyeva, V.~I.~Vasiliev
\paper Numerical homogenization for heat transfer problems in the permafrost zone
\jour Mathematical notes of NEFU
\yr 2020
\vol 27
\issue 2
\pages 77--92
\mathnet{http://mi.mathnet.ru/svfu286}
\crossref{https://doi.org/10.25587/SVFU.2020.47.81.005}
\elib{https://elibrary.ru/item.asp?id=43060543}
Linking options:
  • https://www.mathnet.ru/eng/svfu286
  • https://www.mathnet.ru/eng/svfu/v27/i2/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025