Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2019, Volume 26, Issue 2, Pages 109–115
DOI: https://doi.org/10.25587/SVFU.2019.102.31516
(Mi svfu256)
 

Mathematical modeling

Properties of $(0,1)$-matrices of order $n$ having maximal determinant

M. Nevskii, A. Ukhalov

Department of Mathematics, P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russia
Abstract: We give some necessary conditions for the maximality of $(0, 1)$-determinant. Let $\mathbf{M}$ be a nondegenerate $(0,1)$-matrix of order $n$. Denote by $\mathbf{A}$ the matrix of order $n+1$ which is obtained from $\mathbf{M}$ by adding the $(n+1)$th row $(0,0,\dots,0,1)$ and the $(n+1)$th column consisting of 1's. We prove that if $\mathbf{A}^{-1}=(l_{i,j})$ then for all $i=1,\dots,n$ we have $\sum\limits^{n+1}_{j=1}|l_{I,j}|\ge2$. Moreover, if $|\det(\mathbf{M})|$ is equal to the maximal value of a $(0,1)$-determinant of order $n$, then $\sum\limits^{n+1}_{j=1}|l_{I,j}|=2$ for all $i=1,\dots,n$.
Keywords: $(0,1)$-matrix with the maximal determinant, simplex, cube, axial diameter.
Received: 28.02.2019
Revised: 29.05.2019
Accepted: 03.06.2019
Bibliographic databases:
Document Type: Article
UDC: 519.61+514.17
Language: English
Citation: M. Nevskii, A. Ukhalov, “Properties of $(0,1)$-matrices of order $n$ having maximal determinant”, Mathematical notes of NEFU, 26:2 (2019), 109–115
Citation in format AMSBIB
\Bibitem{NevUkh19}
\by M.~Nevskii, A.~Ukhalov
\paper Properties of $(0,1)$-matrices of order $n$ having maximal determinant
\jour Mathematical notes of NEFU
\yr 2019
\vol 26
\issue 2
\pages 109--115
\mathnet{http://mi.mathnet.ru/svfu256}
\crossref{https://doi.org/10.25587/SVFU.2019.102.31516}
\elib{https://elibrary.ru/item.asp?id=38951527}
Linking options:
  • https://www.mathnet.ru/eng/svfu256
  • https://www.mathnet.ru/eng/svfu/v26/i2/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025