|
Mathematical modeling
Properties of $(0,1)$-matrices of order $n$ having maximal determinant
M. Nevskii, A. Ukhalov Department of Mathematics, P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russia
Abstract:
We give some necessary conditions for the maximality of $(0, 1)$-determinant. Let $\mathbf{M}$ be a nondegenerate $(0,1)$-matrix of order $n$. Denote by $\mathbf{A}$ the matrix of order $n+1$ which is obtained from $\mathbf{M}$ by adding the $(n+1)$th row $(0,0,\dots,0,1)$ and the $(n+1)$th column consisting of 1's. We prove that if $\mathbf{A}^{-1}=(l_{i,j})$ then for all $i=1,\dots,n$ we have $\sum\limits^{n+1}_{j=1}|l_{I,j}|\ge2$. Moreover, if $|\det(\mathbf{M})|$ is equal to the maximal value of a $(0,1)$-determinant of order $n$, then $\sum\limits^{n+1}_{j=1}|l_{I,j}|=2$ for all $i=1,\dots,n$.
Keywords:
$(0,1)$-matrix with the maximal determinant, simplex, cube, axial diameter.
Received: 28.02.2019 Revised: 29.05.2019 Accepted: 03.06.2019
Citation:
M. Nevskii, A. Ukhalov, “Properties of $(0,1)$-matrices of order $n$ having maximal determinant”, Mathematical notes of NEFU, 26:2 (2019), 109–115
Linking options:
https://www.mathnet.ru/eng/svfu256 https://www.mathnet.ru/eng/svfu/v26/i2/p109
|
Statistics & downloads: |
Abstract page: | 60 | Full-text PDF : | 32 |
|