Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2016, Volume 23, Issue 2, Pages 65–77 (Mi svfu24)  

Mathematics

Inverse problems for nonlinear stationary equations

A. Sh. Lyubanova

Siberian Federal University, Svobodnyi ave., 79, Krasnoyarsk 660041
References:
Abstract: Identification of the unknown constant coefficient in the main term of the partial differential equation $-kM\psi_1(u)+g(x)\psi_2(u)=f(x)$ with the Dirichlet boundary condition is investigated. Here $\psi_i(u),\quad i=1,2,$ is a nonlinear increasing function of $u$ and $M$ is a second-order linear elliptic operator. The coefficient $k$ is recovered on the base of additional integral boundary data. The existence and uniqueness of the solution to the inverse problem with a function u and a positive real number k is proved.
Keywords: inverse problem, boundary value problem, second-order elliptic equation, existence and uniqueness theorem, filtration.
Received: 03.03.2016
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. Sh. Lyubanova, “Inverse problems for nonlinear stationary equations”, Mathematical notes of NEFU, 23:2 (2016), 65–77
Citation in format AMSBIB
\Bibitem{Lyu16}
\by A.~Sh.~Lyubanova
\paper Inverse problems for nonlinear stationary equations
\jour Mathematical notes of NEFU
\yr 2016
\vol 23
\issue 2
\pages 65--77
\mathnet{http://mi.mathnet.ru/svfu24}
\elib{https://elibrary.ru/item.asp?id=27507484}
Linking options:
  • https://www.mathnet.ru/eng/svfu24
  • https://www.mathnet.ru/eng/svfu/v23/i2/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :70
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024