Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2018, Volume 25, Issue 3, Pages 92–114
DOI: https://doi.org/10.25587/SVFU.2018.99.16953
(Mi svfu229)
 

Mathematics

Classical solvability of the radial viscous fingering problem in a Hele–Shaw cell

A. Tania, H. Tanib

a Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
b Department of Mechanical Engineering, Texas AM University, TX 77843-3123, USA
Abstract: We discuss a single-phase radial viscous fingering problem in a Hele–Shaw cell, which is a nonlinear problem with a free boundary for an elliptic equation. Unlike the Stefan problem for heat equation Hele–Shaw problem is of hydrodynamic type. In this paper a single-phase Hele–Shaw problem in a radial flow geometry admits a unique classical solution by applying the same method as for Stefan problem and justifying the vanishing the coefficient of the derivative with respect to time in a parabolic equation.
Keywords: radial viscous fingering, Hele–Shaw problem, unique classical solution.
Received: 19.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: A. Tani, H. Tani, “Classical solvability of the radial viscous fingering problem in a Hele–Shaw cell”, Mathematical notes of NEFU, 25:3 (2018), 92–114
Citation in format AMSBIB
\Bibitem{TanTan18}
\by A.~Tani, H.~Tani
\paper Classical solvability of the radial viscous fingering problem in a Hele--Shaw cell
\jour Mathematical notes of NEFU
\yr 2018
\vol 25
\issue 3
\pages 92--114
\mathnet{http://mi.mathnet.ru/svfu229}
\crossref{https://doi.org/10.25587/SVFU.2018.99.16953}
\elib{https://elibrary.ru/item.asp?id=36414287 }
Linking options:
  • https://www.mathnet.ru/eng/svfu229
  • https://www.mathnet.ru/eng/svfu/v25/i3/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024