Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2018, Volume 25, Issue 2, Pages 55–64
DOI: https://doi.org/10.25587/SVFU.2018.98.14231
(Mi svfu219)
 

Mathematics

Absolute $\sigma$-retracts and Luzin's theorem

P. V. Chernikov

Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russia
Abstract: We prove some properties of absolute $\sigma$-retracts. The generalization of the classical Luzin theorem about approximation of a measurable mapping by continuous mappings is given. Namely, we prove the following statement:
Theorem. Let $Y$ be a complete separable metric space in $AR_\sigma(\mathfrak M)$, where $AR_\sigma(\mathfrak M)$ is the whole complex of all absolute $\sigma$-retracts. Suppose that $X$ is a normal space, $A$ is a closed subset in $X$, $\mu\geq0$ is the Radon measure on $A$, and $f\colon A\to Y$ is a $\mu$-measurable mapping. Given $\varepsilon>0$, there exist a closed subset $A_\varepsilon$ of $A$ such that $\mu(A\setminus A_\varepsilon)\leq\varepsilon$ and a continuous mapping $f_\varepsilon\colon X\to Y$ such that $f_\varepsilon(x)=f(x)$ for all $x\in A_\varepsilon$.
Note that a connected separable $ANR(\mathfrak{M})$-space belongs to $AR_\sigma(\mathfrak{M})$.
Keywords: absolute $\sigma$-retract, Luzin's theorem.
Received: 10.03.2018
Bibliographic databases:
Document Type: Article
UDC: 513.83
Language: Russian
Citation: P. V. Chernikov, “Absolute $\sigma$-retracts and Luzin's theorem”, Mathematical notes of NEFU, 25:2 (2018), 55–64
Citation in format AMSBIB
\Bibitem{Che18}
\by P.~V.~Chernikov
\paper Absolute $\sigma$-retracts and Luzin's theorem
\jour Mathematical notes of NEFU
\yr 2018
\vol 25
\issue 2
\pages 55--64
\mathnet{http://mi.mathnet.ru/svfu219}
\crossref{https://doi.org/10.25587/SVFU.2018.98.14231}
\elib{https://elibrary.ru/item.asp?id=37028090}
Linking options:
  • https://www.mathnet.ru/eng/svfu219
  • https://www.mathnet.ru/eng/svfu/v25/i2/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024