Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2018, Volume 25, Issue 2, Pages 48–54
DOI: https://doi.org/10.25587/SVFU.2018.98.14230
(Mi svfu218)
 

Mathematics

About the absolute value function with different nodes of Lagrange interpolation

V. B. Khokholov

M. K. Ammosov North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677000, Russia
Abstract: Lagrange interpolation processes are considered for the following matrixes of interpolation nodes: the matrix of Chebyshev polynomial roots of the 1st kind, the matrix of Legendre polynomials roots, and the extended matrix of Legendre polynomials roots.
For these matrixes the uniform convergence of Lagrange process of interpolation for the absolute value function proved. Also, we receive estimates on the order of convergence for each of these matrixes. To ensure the quality of convergence, the endpoints of the segment were added as nodes to the matrix of Legendre roots. However, for the absolute value function the order of convergence of the Legendre process does not change, but improves by approximately 8 times. For comparison, the negative result of equidistant nodes is taken.
Keywords: modulus of a number, interpolation, Lebesgue constant, Chebyshev and Legendre polynomials, extended matrix.
Received: 16.04.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.85
Language: Russian
Citation: V. B. Khokholov, “About the absolute value function with different nodes of Lagrange interpolation”, Mathematical notes of NEFU, 25:2 (2018), 48–54
Citation in format AMSBIB
\Bibitem{Kho18}
\by V.~B.~Khokholov
\paper About the absolute value function with different nodes of Lagrange interpolation
\jour Mathematical notes of NEFU
\yr 2018
\vol 25
\issue 2
\pages 48--54
\mathnet{http://mi.mathnet.ru/svfu218}
\crossref{https://doi.org/10.25587/SVFU.2018.98.14230}
\elib{https://elibrary.ru/item.asp?id=37028089}
Linking options:
  • https://www.mathnet.ru/eng/svfu218
  • https://www.mathnet.ru/eng/svfu/v25/i2/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024