Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2018, Volume 25, Issue 1, Pages 90–97
DOI: https://doi.org/10.25587/SVFU.2018.1.12771
(Mi svfu212)
 

Mathematical modeling

Modeling of particle motion in spiral pneumoseparator by statistical methods

S. R. Krylatovaa, A. I. Matveevb, I. F. Lebedeva, B. V. Yakovleva

a M. K. Ammosov North-Eastern Federal University Institute of Physics and Technologies, 48 Kulakovsky Street, Yakutsk 677891, Russia
b Chersky Mining Institute of the North, 43 Lenin Avenue, Yakutsk 677980, Russia
References:
Abstract: In mathematical modeling of mineral processing, there arise problems of determining the probability of the particle presence on the working surfaces of devices. In the paper, we propose a statistical approach to solving such problem, i. e., the idea of the Gibbs method is used. We consider problems of modeling processes in an air spiral separator. A mathematical model of the spiral surface of a pneumoseparator, a model of particle motion, a flux of noninteracting particles along the separator working surface, and an algorithm for determining the particle flux concentration are developed. The calculated distribution of the noninteracting particles concentration on the working surface of the device is identified with the probability distribution of the location of one particle. The developed algorithm for determining the probability of position of a particle on the working surface of the pneumoseparator can be used as an element of a more complex mathematical model, for example, a model where interactions between particles are taken into account.
Keywords: spiral separator, concentration, statistical method, motion equation, particle flow, enrichment, mathematical model.
Received: 15.12.2017
Bibliographic databases:
Document Type: Article
UDC: 532.5.031
Language: Russian
Citation: S. R. Krylatova, A. I. Matveev, I. F. Lebedev, B. V. Yakovlev, “Modeling of particle motion in spiral pneumoseparator by statistical methods”, Mathematical notes of NEFU, 25:1 (2018), 90–97
Citation in format AMSBIB
\Bibitem{KryMatLeb18}
\by S.~R.~Krylatova, A.~I.~Matveev, I.~F.~Lebedev, B.~V.~Yakovlev
\paper Modeling of particle motion in spiral pneumoseparator by statistical methods
\jour Mathematical notes of NEFU
\yr 2018
\vol 25
\issue 1
\pages 90--97
\mathnet{http://mi.mathnet.ru/svfu212}
\crossref{https://doi.org/10.25587/SVFU.2018.1.12771}
\elib{https://elibrary.ru/item.asp?id=35078462}
Linking options:
  • https://www.mathnet.ru/eng/svfu212
  • https://www.mathnet.ru/eng/svfu/v25/i1/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :89
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024