Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2017, Volume 24, Issue 4, Pages 37–51
DOI: https://doi.org/10.25587/SVFU.2018.4.11315
(Mi svfu199)
 

Mathematics

An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body

N. P. Lazarevab, V. V. Èverstova

a M. K. Ammosov North-Eastern Federal University, 48 Kulakovsky Street, Yakutsk 677000, Russia
b Lavrentiev Institute of Hydrodynamics, 15 Lavrentiev Avenue, Novosibirsk 630090, Russia
References:
Abstract: A mathematical model describing equilibrium of cracked three-dimensional bodies with rigid thin stiffener on the outer boundary is studied. Inequality type boundary condition is imposed at the crack faces providing a mutual non-penetration between crack faces. We analyze the dependence of solutions on the size of the thin rigid stiffener reinforcing the cracked body on the outer edge. Existence of the solution to the optimal control problem is proved. For this problem the cost functional is defined by an arbitrary continuous functional, while the size parameter of the thin rigid stiffener is chosen as a control parameter.
Keywords: variational inequality, optimal control problem, nonpenetration, non-linear boundary conditions, crack.
Received: 15.10.2017
Bibliographic databases:
Document Type: Article
UDC: 539.311
Language: Russian
Citation: N. P. Lazarev, V. V. Èverstov, “An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body”, Mathematical notes of NEFU, 24:4 (2017), 37–51
Citation in format AMSBIB
\Bibitem{LazEve17}
\by N.~P.~Lazarev, V.~V.~\`Everstov
\paper An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body
\jour Mathematical notes of NEFU
\yr 2017
\vol 24
\issue 4
\pages 37--51
\mathnet{http://mi.mathnet.ru/svfu199}
\crossref{https://doi.org/10.25587/SVFU.2018.4.11315}
\elib{https://elibrary.ru/item.asp?id=32724028}
Linking options:
  • https://www.mathnet.ru/eng/svfu199
  • https://www.mathnet.ru/eng/svfu/v24/i4/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :46
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024