Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2016, Volume 23, Issue 1, Pages 87–107 (Mi svfu18)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

On the hierarchy of thin delaminated inclusions in elastic bodies

A. M. Khludnevab, T. S. Popovac

a Lavrentiev Institute of Hydrodynamics SBRAS, Acad. Lavrentiev ave, 15, Novosibirsk 630090, Russia;
b Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090, Russia
c M. K. Ammosov North-Eastern Federal University, Belinskogo st., 58, Yakutsk 677000, Russia
Full-text PDF (358 kB) Citations (3)
References:
Abstract: We consider models of thin delaminated inclusions in elastic bodies. The delamination means a presence of a crack between the inclusion and the matrix. Inequality type boundary conditions are imposed at the crack faces to prevent a mutual penetration. This approach leads to free boundary problem formulations. Connections between different mathematical models are discussed. Passages to limits with respect to inclusion rigidity parameters are analyzed.
Keywords: thin inclusion, elastic body, crack, non-linear boundary conditions, rigidity parameter, limiting models.
Received: 19.02.2016
Bibliographic databases:
Document Type: Article
UDC: 539.3+517.958
Language: Russian
Citation: A. M. Khludnev, T. S. Popova, “On the hierarchy of thin delaminated inclusions in elastic bodies”, Mathematical notes of NEFU, 23:1 (2016), 87–107
Citation in format AMSBIB
\Bibitem{KhlPop16}
\by A.~M.~Khludnev, T.~S.~Popova
\paper On the hierarchy of thin delaminated inclusions in elastic bodies
\jour Mathematical notes of NEFU
\yr 2016
\vol 23
\issue 1
\pages 87--107
\mathnet{http://mi.mathnet.ru/svfu18}
\elib{https://elibrary.ru/item.asp?id=27475090}
Linking options:
  • https://www.mathnet.ru/eng/svfu18
  • https://www.mathnet.ru/eng/svfu/v23/i1/p87
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :83
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024