Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2022, Volume 32, Issue 4, Pages 14–20
DOI: https://doi.org/10.14357/08696527220402
(Mi ssi852)
 

Detection of distribution drift

A. A. Grushoa, N. A. Grushoa, M. I. Zabezhailoa, D. V. Smirnovb, E. E. Timoninaa, S. Ya. Shorgina

a Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
b Sberbank of Russia, 19 Vavilov Str., Moscow 117999, Russian Federation
References:
Abstract: Changing the properties of the data being collected is often referred to as data drift (various options for shifting the characteristics of the data). The existence of drift in artificial intelligence system training data often leads to a decrease in the efficiency of machine learning and erroneous solutions of artificial intelligence systems built on these data. In this regard, the problems of detecting drift in machine learning data, the moment of drift formation, and the consequences of changes in training data become relevant. The work proposes a method for detecting the drift of a probability distribution in an arbitrary metric space of large dimension. The method relies on the difference between unknown probability distributions in different regions of the original space in the event of drift. A drift model consisting of two different probability distributions is considered. Using the balls in metric space as the basis of the method allows one to create an efficient algorithm for calculating the ownership of data points to one of the balls associated with different distributions of the drift model. This circumstance seems to be essential for revealing the drift of a distribution in a high-dimensional space.
Keywords: distribution drift, mathematical statistics, efficiently calculated algorithm.
Received: 14.09.2022
Document Type: Article
Language: Russian
Citation: A. A. Grusho, N. A. Grusho, M. I. Zabezhailo, D. V. Smirnov, E. E. Timonina, S. Ya. Shorgin, “Detection of distribution drift”, Sistemy i Sredstva Inform., 32:4 (2022), 14–20
Citation in format AMSBIB
\Bibitem{GruGruZab22}
\by A.~A.~Grusho, N.~A.~Grusho, M.~I.~Zabezhailo, D.~V.~Smirnov, E.~E.~Timonina, S.~Ya.~Shorgin
\paper Detection of distribution drift
\jour Sistemy i Sredstva Inform.
\yr 2022
\vol 32
\issue 4
\pages 14--20
\mathnet{http://mi.mathnet.ru/ssi852}
\crossref{https://doi.org/10.14357/08696527220402}
Linking options:
  • https://www.mathnet.ru/eng/ssi852
  • https://www.mathnet.ru/eng/ssi/v32/i4/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025