Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2022, Volume 32, Issue 3, Pages 36–49
DOI: https://doi.org/10.14357/08696527220304
(Mi ssi840)
 

Classification models for P300 evoked potentials

A. M. Samokhinaa, R. G. Neycheva, V. V. Goncharenkoa, R. K. Grigoryanb, V. V. Strijovc

a Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700, Russian Federation
b M. V. Lomonosov Moscow State University, 1 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
c Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
References:
Abstract: The paper is devoted to the problem of user's attention detection. It investigates the choice of a visual stimulus by the electroencephalogram (EEG) with the evoked potentials related to the event, P300, highlighted in it. The electrical brain potentials are measured while the user is observing visual stimuli. The goal is to select a stimulus which causes the maximum brain response. A classification model detects if there is a P300 potential in an EEG segment. Various classification models for event-related potentials are compared. The paper proposes a method of data augmentation to improve the quality of classification. Computational experiments use an original real-world dataset of P300 potentials. This dataset was collected on 60 healthy users who are presented with visual stimuli. It is released to the public access.
Keywords: classification, electroencephalogram, event-related potential, model selection, brain–computer interface.
Funding agency Grant number
Russian Foundation for Basic Research 20-37-90050
This research was partially supported by RFBR (project 20-37-90050).
Received: 16.01.2022
Document Type: Article
Language: Russian
Citation: A. M. Samokhina, R. G. Neychev, V. V. Goncharenko, R. K. Grigoryan, V. V. Strijov, “Classification models for P300 evoked potentials”, Sistemy i Sredstva Inform., 32:3 (2022), 36–49
Citation in format AMSBIB
\Bibitem{SamNeyGon22}
\by A.~M.~Samokhina, R.~G.~Neychev, V.~V.~Goncharenko, R.~K.~Grigoryan, V.~V.~Strijov
\paper Classification models for~P300 evoked potentials
\jour Sistemy i Sredstva Inform.
\yr 2022
\vol 32
\issue 3
\pages 36--49
\mathnet{http://mi.mathnet.ru/ssi840}
\crossref{https://doi.org/10.14357/08696527220304}
Linking options:
  • https://www.mathnet.ru/eng/ssi840
  • https://www.mathnet.ru/eng/ssi/v32/i3/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024