Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2022, Volume 32, Issue 1, Pages 160–167
DOI: https://doi.org/10.14357/08696527220115
(Mi ssi821)
 

This article is cited in 2 scientific papers (total in 2 papers)

Search of anomalies in big data

A. A. Grushoa, N. A. Grushoa, M. I. Zabezhailoa, D. V. Smirnovb, E. E. Timoninaa, S. Ya. Shorgina

a Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
b Sberbank of Russia, 19 Vavilov Str., Moscow 117999, Russian Federation
Full-text PDF (191 kB) Citations (2)
References:
Abstract: The problem of a sufficient amount of the information for identifying the search object in the big data is that the search method may, under noise conditions, skip the searched object or, conversely, point to objects that accidentally possess the features of the present searched object. The paper discusses the simple approach to estimating the solvability of the problem of searching for the required information in big data in weak assumptions about the informativity of the identification features of search objects. In the simplest case, big data consist of a set of objects, each of which is described by a set of parameters. Each parameter definition area is its own information space. Parameter values help identify the searched object and filter false objects. If there are few parameters, then unambiguous identification of the desired object is possible in stronger restrictions on the volume of big data. Since the possibility of unambiguously identifying the desired object is not known in advance, it is necessary, at least approximately, to evaluate the restrictions on the amount of big data in which it is possible to unambiguously identify the desired information. For such estimates, it is proposed to use the limit theorems of the probability theory in the series scheme.
Keywords: information security, search for anomalies, algorithms for filtering false alarms.
Received: 22.09.2021
Document Type: Article
Language: Russian
Citation: A. A. Grusho, N. A. Grusho, M. I. Zabezhailo, D. V. Smirnov, E. E. Timonina, S. Ya. Shorgin, “Search of anomalies in big data”, Sistemy i Sredstva Inform., 32:1 (2022), 160–167
Citation in format AMSBIB
\Bibitem{GruGruZab22}
\by A.~A.~Grusho, N.~A.~Grusho, M.~I.~Zabezhailo, D.~V.~Smirnov, E.~E.~Timonina, S.~Ya.~Shorgin
\paper Search of~anomalies in~big data
\jour Sistemy i Sredstva Inform.
\yr 2022
\vol 32
\issue 1
\pages 160--167
\mathnet{http://mi.mathnet.ru/ssi821}
\crossref{https://doi.org/10.14357/08696527220115}
Linking options:
  • https://www.mathnet.ru/eng/ssi821
  • https://www.mathnet.ru/eng/ssi/v32/i1/p160
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :60
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024