Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2022, Volume 32, Issue 1, Pages 34–45
DOI: https://doi.org/10.14357/08696527220103
(Mi ssi809)
 

Truncation bounds for inhomogeneous Markov chains with continuous time and catastrophes

I. A. Usova, I. A. Kovaleva, A. I. Zeifmanabc

a Department of Applied Mathematics, Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation
b Federal Research Center "Computer Sciences and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
c Vologda Research Center of the Russian Academy of Sciences, 56A Gorky Str., Vologda 160014, Russian Federation
References:
Abstract: The authors have obtained a new uniform estimate for the truncation bounds for a more general class of weakly ergodic Markov chains with continuous time and catastrophes. In contrast to the previously studied cases, for the corresponding direct Kolmogorov system, the matrix $A$ has a more general form and less stringent restrictions on the intensity. The authors assume that the process is weakly ergodic in the $l_1$ norm and in the “weighted” norm $l_{1\mathrm{D}}$. The obtained estimate is valid for heterogeneous processes of birth and death as well as for queue with group admission and maintenance of requirements and for nonstationary service models with catastrophes and “heavy tails”, i. e., when the intensities decrease at a power rate. The paper also describes an inhomogeneous queuing system $M_t\vert M_t\vert S$ with catastrophes as a numerical example.
Keywords: approximations, truncations, catastrophes, queuing systems, weak ergodicity.
Received: 24.01.2022
Document Type: Article
Language: Russian
Citation: I. A. Usov, I. A. Kovalev, A. I. Zeifman, “Truncation bounds for inhomogeneous Markov chains with continuous time and catastrophes”, Sistemy i Sredstva Inform., 32:1 (2022), 34–45
Citation in format AMSBIB
\Bibitem{UsoKovZei22}
\by I.~A.~Usov, I.~A.~Kovalev, A.~I.~Zeifman
\paper Truncation bounds for inhomogeneous Markov chains with continuous time and catastrophes
\jour Sistemy i Sredstva Inform.
\yr 2022
\vol 32
\issue 1
\pages 34--45
\mathnet{http://mi.mathnet.ru/ssi809}
\crossref{https://doi.org/10.14357/08696527220103}
Linking options:
  • https://www.mathnet.ru/eng/ssi809
  • https://www.mathnet.ru/eng/ssi/v32/i1/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :62
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024