Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2021, Volume 31, Issue 4, Pages 135–143
DOI: https://doi.org/14357/08696527210411
(Mi ssi803)
 

This article is cited in 1 scientific paper (total in 1 paper)

Enhanced tokenization algorithm for personal data protection

A. A. Grushoa, D. V. Smirnovb, E. E. Timoninaa, S. Ya. Shorgina

a Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
b Sberbank of Russia, 19 Vavilov Str., Moscow 117999, Russian Federation
Full-text PDF (216 kB) Citations (1)
References:
Abstract: Tokenization is one of the methods of depersonalizing personal data. This method is a bijective replacement of fragments of personal data with random elements of a certain set. One of the weaknesses of personal data protection through tokenization is the possibility of statistically assessing the probabilities of the occurrence of protected fragments of personal data. The paper proposes a method of enhancing tokenization algorithms which allows overcoming this weakness. The enhanced tokenization algorithm is slightly different in complexity from other algorithms. At the same time, the enhanced algorithm can be used both in cases of tokenization by replacing alphabets describing various fragments of personal data and in cases where personal data are divided into fragments of the same length and converted into fragments of the same length but in other alphabets.
Keywords: information security, depersonalization of personal data, tokenization, mathematical statistics.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-03081_мк
The paper was partially supported by the Russian Foundation for Basic Research (project 18-29-03081).
Received: 23.09.2021
Document Type: Article
Language: Russian
Citation: A. A. Grusho, D. V. Smirnov, E. E. Timonina, S. Ya. Shorgin, “Enhanced tokenization algorithm for personal data protection”, Sistemy i Sredstva Inform., 31:4 (2021), 135–143
Citation in format AMSBIB
\Bibitem{GruSmiTim21}
\by A.~A.~Grusho, D.~V.~Smirnov, E.~E.~Timonina, S.~Ya.~Shorgin
\paper Enhanced tokenization algorithm for~personal data protection
\jour Sistemy i Sredstva Inform.
\yr 2021
\vol 31
\issue 4
\pages 135--143
\mathnet{http://mi.mathnet.ru/ssi803}
\crossref{https://doi.org/14357/08696527210411}
Linking options:
  • https://www.mathnet.ru/eng/ssi803
  • https://www.mathnet.ru/eng/ssi/v31/i4/p135
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024